Gesamtverband der Deutschen Versicherungswirtschaft e.V.

Highlights von Solvency II

Dr. Holger Bartel

qx-Club Berlin, 15.01.2007

Inhalt

Highlights

- Modelle: CEA, QIS 2, dt. Modell, SST
- QIS 2-Kalibrierung
- Margen: MVM, CoC, Quantil, QIS 2-Stress
- Überschussbeteiligung, k-Faktor
- negative Rückstellung / Duration
- Bilanzen: HGB-, ökonomische -, Solva-

Haupt-Modellunterschiede

	stochastisch	Überschuss- Beteiligung	MVM
SST	✓ Szenarienu. Faktoren		✓ CoC
Dt. Modell			nur implizit
CEA-Modell		√ k-Faktor	✓ CoC
QIS 2	✓ "BaFin- Stress"	√ k-Faktor	✓ Quantil u. CoC

QIS₂

Vorgaben der Europäischen Kommission

- Harmonisierung Rückstellungen
- Rückstellung = Best Estimate + Risikomarge
- "Sicherheitsniveau" der Risikomarge 75%,
 Risikomarge mindestens halbe Standardabweichung
- Diskontierung mit risikoneutralem Zins
- Kompatibilität mit IFRS

Solvenzkapitalanforderung (SCR)

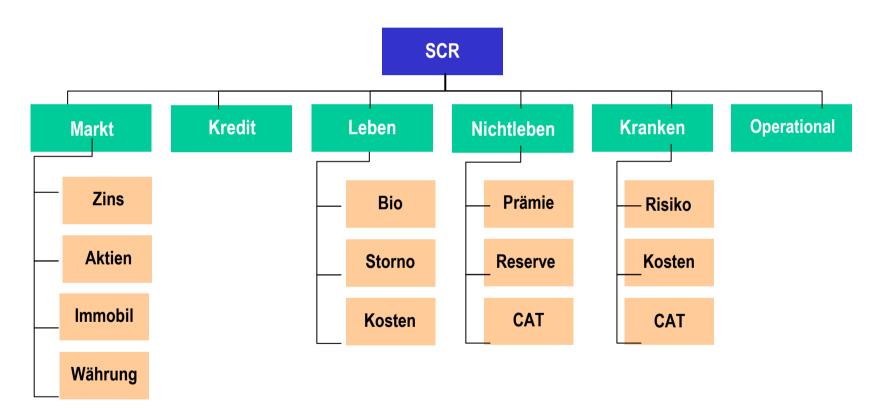
Definition des SCR in der QIS 2

- SCR = Veränderung der Eigenmittel in ökonomischer Bilanz (Kapitalanlagen zu MW, Quantils-DR)
- Zeithorizont: ein Jahr
- Risikomaß 99,5%-VaR oder 99%-TailVaR (approx. äquivalent)

Versicherungstechnische Rückstellungen

Aufgabenstellung

- stochastische Bewertung diskontierter Cash-Flows
 2. Ordnung
- stochastische Kennzahlen zu bestimmen
 - Erwartungswert → Erwartungswertrückstellung
 - 75%-Quantil → Quantilsrückstellung
- Diskontierung mit vorgegebener Zinsstrukturkurve


Berechnung Marktwert der vt. Rückstellungen

Preis aus replizierendem Portfolio ableitbar

Bewertung mittels Quantil oder CoC

Teilrisiken

Korrelationsmatrix Gesamt-SCR

Korrelationen können bei sicheren Erkenntnissen individuell abgeändert werden.

	Markt	Kredit	Leben	Kranken	Nicht-L.	OpRisk
Markt	100%					
Kredit	75%	100%				
Leben	25%	25%	100%			
Kranken	25%	25%	25%	100%		
Nichtleben	25%	50%	0%	0%	100%	
Operational	50%	25%	25%	25%	50%	100%

Korrelationsmatrix für Marktrisiken

	Zins	Aktien	Immob.	Währung
Zins	100%			
Aktien	<u>75%</u>	100%		
Immob.	75%	100%	100%	
Währung	25%	25%	25%	100%

QIS 2-Approximationen

Bestimmung MVL

- Stufe 1: Stochastische Simulation => Quantils-DR
- Stufe 2: <u>Deterministischer</u> BEL
 - mit RGL 2.O, risikoneutrale Diskontierung
 - Optionen (z.B. Storno, KW) mit AusübungsWKT
 - QIS 2-Stress als Proxy für Quantils-DR
- Stufe 3: <u>HGB-DR mit Neudiskontierung</u>:
 - $1/(1 + \Delta^*Duration) * HGB-Rückstellung$
 - Durationen aus dt. Standardmodell
 - Kein QIS 2-Stress (Margen Biom./Kosten in HGB-DR)
- Stufe 4: <u>HGB-DR</u> unmodifiziert übernehmen

DIE DEUTSCHEN VERSICHERER

QIS 2: Problemübersicht

- Zinssenkung zu schwach
- Korrelation SCR Aktien/SCR Zins zu hoch
- Cat-Risk sehr hoch
- Stornoquote steigt nicht mit Zins, gar. RKW unberücksichtigt -> VVG-Reform
- Hegdingmaßnahmen unberücksichtigt
- negative Rückstellungen
- CoC mit oder ohne Kapitalmarktrisiko?
- Best Estimate Rechungsgrundlagen unklar

QIS 2: Zinsrisiko

Zinssenkungsrisiko bei QIS 2 im Vergleich zum dt. Standardmodell sehr schwach ausgeprägt:

- QIS 2: Zinsen ca. minus 1%-Punkt
- dt. Standardmodell: Zinsen ca. minus 1,4%-Punkte
- ⇒ hoher Duration-Gap wird relativ schwach "bestraft,
- ⇒ Zinsänderungsrisiko wird deutlich unterschätzt

QIS 2: Korrelation

- In QIS 2 hohe positive(!) Korr. SCR Aktien/SCR Zins: +0,75
- Im dt. Standardmodell Korr. von -0,1 bei Zinssenkung
- ⇒ In QIS 2 nur geringe Diversifikation durch Aktien
- ⇒ Bei Aggregation entsteht hohe Kapitalanforderung

QIS 2-Aktienrisiko gewinnt stark an Bedeutung und wird beinahe so groß wie das Zinsrisiko.

QIS 2: Life Catastrophe Risk

Life mortality Cat-Risk in QIS 2

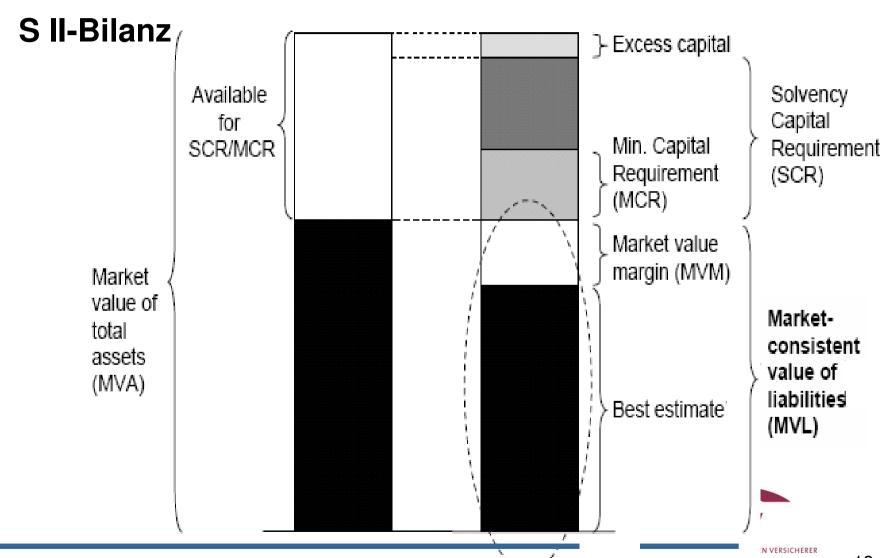
- 0,3% der Todesfallsummen
- höher als in QIS 1 und dt. Standardmodell
- plausibel?

QIS 2: Life CAT Risk

+ VS	1.600 Mrd.	_	
- DR	600 Mrd.		
= RisKap	1.000 Mrd.	_	
- DR Rente	200 Mrd.		
= Netto RisKap	800 Mrd.	_	
* erhöhte qx	0,6 %		
= Cat-Risk	4,8 Mrd.	=	0,3% VS

Solvaquoten

Verfügbare und erforderliche Eigenmittel


Solvency I		Solvency II		
EM SI-Spanne	≈ 6% DR <u>•4</u> ≈ 3,2% DR <u>•3</u>			
Quote	≈ 190%	Quote ≈ 240%		

ASSETS

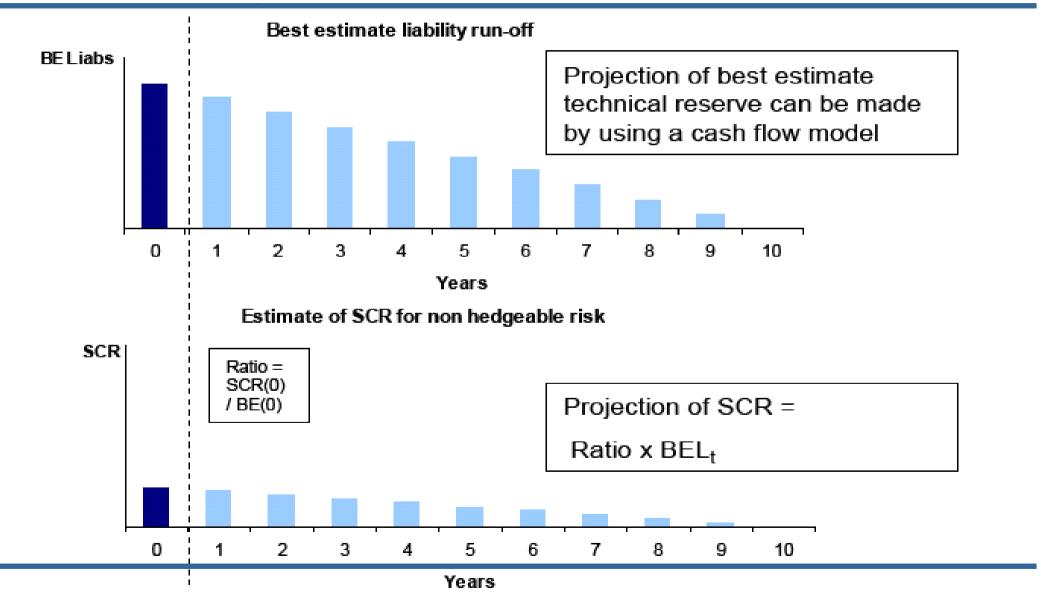
LIABILITIES

Der CoC-Ansatz ist ein Ansatz zur Bestimmung der MVM. Er basiert auf folgender Zerlegung:

MW Passiva (MVL) = Best Estimate der Liabilities (BEL)

+ Market Value Margin (MVM)

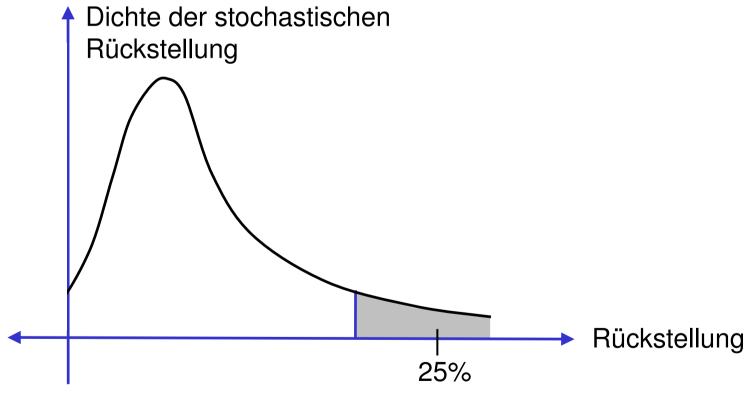
Die MVM wird ermittelt als der Barwert der Kapitalkosten für die Kapitalanforderung SCR.


CoC-Ansatz

- (weniger willkürliche) Alternative zu Quantilsansatz
- Rückstellung soll MVL approximieren
- CoC-Marge soll SCR der Abwicklung finanzieren

$$CoCMarge = CoCRate \cdot \left(\frac{1}{1+r_1} \cdot SCR(1) + \dots + \frac{1}{\left(1+r_n\right)^n} \cdot SCR(n)\right)$$

 $CoCMarge \approx CoCRate \cdot SCR_{Abw} \cdot Duration(E-Rückst)$


zusätzlich entscheidend:

- Wird bei SCR-Berechnung das Kapitalmarktrisiko während der Abwicklung angesetzt oder nicht?
- Äquivalent: Wie schnell wird Hedge-Portfolio erreicht?
 QIS 2: "nach gewisser Zeit".
- Mit Kapitalmarktrisiko: CoC-Marge ≈ 4 * Quantils-Marge
- Anm.: Wird Adressausfallrisiko auch gehedgt?

Quantils-Ansatz

75%-Quantil der Rückstellungsverteilung

Ergebnis SST:

Cost of Capital-Marge ≈ Quantils-Marge à 75%

Deutsche Erfahrungswerte:

Cost of Capital-Marge ≈ Quantils-Marge à 75% ≈ 3% DR (Ähnlichkeit, obwohl CoC-Marge Marktrisiko enthält)

E-RST / HGBDR ≈ 82 %

MVL / HGBDR ≈ 85 %

QIS 2-Stress

"QIS 2-Stress" für die Lebensversicherung

- einfache und robuste Berechnung der MVM
- hat als Substitut des Quantils-Ansatzes die gleichen Schwächen
- Stress setzt auf der Erwartungswertschätzung auf
- Für einzelne Risiken wird jeweils eine gestresste "Erwartungswertrückstellung" berechnet
- Rückstellungserhöhungen zu einzelnen Risiken werden über Korrelationsmatrix aggregiert

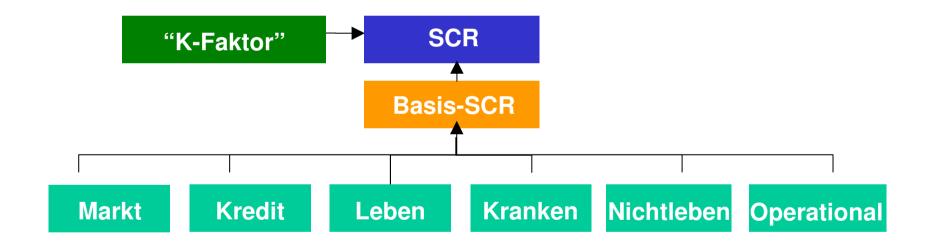
QIS 2-Stress

Szenarien zum QIS 2-Stress Leben

Risikofaktor	Veränderung Rechnungsgrundlage
Sterblichkeit (qx)	+5%
Langlebigkeit (qx)	-5%
Stornoquote	+33%
Kosten	+3%
Invalidität (ix)	+5%

QIS 2-Stress

Korrelationsmatrix zum QIS 2-Stress Leben


	Sterblich- keit	Langlebig- keit	Storno	Kosten	Invalidität
Sterblich- keit	100%				
Langlebig -keit	-75%	100%			
Storno	0%	0%	100%		
Kosten	0%	0%	25%	100%	
Invalidität	0%	0%	0%	0%	100%

Anm.: biometrische Hedging nur implizit

QIS 2: Überschussbeteilugung, k-Faktor

k-Faktor

k-Faktor

k-Faktor ist Ansatz zur SCR-Ermittlung unter Berücksichtigung der ermessensabhängigen Überschussbeteiligung (ÜB):

DE: k ≈ 1 wg. hoher Lock-In-Garantien, §56a VAG UK: k ≤ 1 wg. Policyholders Reasonable Expectations (PRE) und Principles and Practices of Financial Management (PPFM)

k-Faktor

Problem bei k-Faktor-Ansatz

SCR – k*Überschüsse kann negativ werden.

Dies ist ökonomisch unsinnig.

Dies kann bei sehr hohem Zinsniveau eintreten, wenn z.B. der Zins nach Senkungsschock noch über dem mittleren Bestandsrechungszins liegt.

k-Faktor

Sonderregelung für deutsche VU in QIS 2

- Die deutschen Versicherungsunternehmen rechnen nur mit Garantiewerten.
- Sie ermitteln keine Überschussbeteiligung und ziehen diese daher auch nicht vom SCR ab.

Überschussbeteiligung

Überschussbeteiligung im dt. Standardmodell

- Es wird nur mit garantierten Werten gerechnet, sowohl bei MVL als auch bei Duration
- Duration: garantierte Cash Flows 2. Ordnung ohne ÜB
 niedrige Duration => geringeres Zinssenkungsrisiko
- Option des LVU auf Anpassung der ÜB ist nicht berücksichtigt => Duration kann nicht weiter sinken

QIS₃

Schwerpunkte:

- Kalibrierung
- Eigenmittel (insbes. tier-Struktur)
- Gruppen-Aspekte

Mögliche QIS 3-Vorgaben:

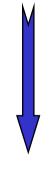
- aktuellere Datenbasis 2005
- nur noch CoC-Ansatz, nicht mehr Quantils-Ansatz/Stresstest, keine HGB-Approximationen für MVL

Bilanzen: HGB-, ökonomische -, Solva-

k-Faktor dient dem Übergang von ökonomischer Bilanz zu Solvency-Bilanz

Nach k-Faktor-Ansatz Passivierung der Überschüsse:

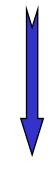
→ ASM sinkt um 100%*Überschüsse


Zugleich außerbilanzielle Kompensierung mittels k-Faktor:

⇒ SCR sinkt um k*Überschüsse, denn bei Stress entfallen Überschüsse

Frage: Ist das Ziel einer vorsichtigen und transparenten Bilanzierung erreicht?

Bilanzen: HGB-, ökonomische -, Solva-


HGB-Bilanz

Abzug der Margen (Zins, Biometrie, Kosten)

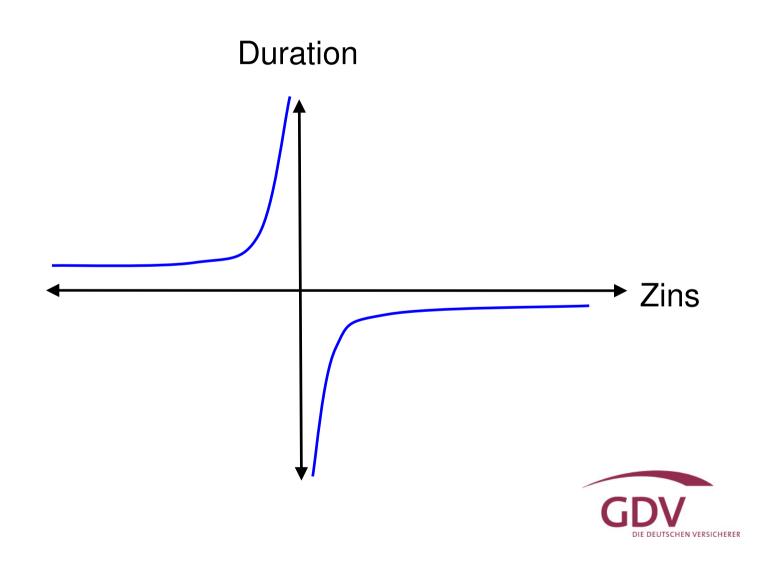
Hinzurechnung Überschussbeteiligung und MVM

ökonomische Bilanz

Abzug Überschussbeteiligung

Solva-Bilanz

negative Deckungsrückstellung (in Solva-Bilanz)


Deckungsrückstellung nach HGB und Best Estimate

In QIS 2 ist negative DR ausdrücklich vorgesehen!

- Maximierung mit null nicht vorgesehen (wäre auch inkonsistent zw. RisikoV und KLV)
- negative DR als Risikoträger führt zu negativem SCR
- Im Gesamtbestand DR positiv, außer bei RisikoVU (!)

Duration

Cost of Capital: MVM-Abschätzung

1)
$$CoCMarge \le \frac{1}{r} \cdot CoCRate \cdot SCR \approx SCR$$

 $\le VaR(99,5\%) = 99,5\% - Quantil$

2)
$$CoC - Marge \ge 0$$

3)
$$0 \le CoC - Marge \le SCR$$
 $0 \le CoC - Marge \le 10\% \cdot DR$
 $\approx 3\% DR$

Ansatz: Es gibt einen liquiden Markt für Versicherungen

- MVM kann implizit aus Marktpreisen bestimmt werden
- Marktpreise nur bei Vertragsabschluss beobachtbar

Begriffsdefinitionen

Barwerte der Best Estimate (BE)-Cashflows, mit Marktzins diskontiert:

Pr : BE Barwert der Prämien

Le : BE Barwert der garantierten Leistungen

BEL : Best Estimate Liabilities (= Le-Pr + z·Ü)

MVL : Market Value Liabilities (≡ BEL + MVM)

MVM : Market Value Margin

Begriffsdefinitionen

Ü : BE Barwert künftiger Überschüsse,

deterministisch approximiert durch

Ü≈HGBDR – (Le–Pr)

bei Vertragsabschluss gilt HGBDR=0 und somit

 $\ddot{U} = Pr-Le > 0$

z : Zuführungsquote, z.B. 90%

"Marktwert-Äquivalenzprinzip" (gilt bei Vertragsabschluss)

$$MVL = BEL + MVM = 0$$

Anm.: "nil gain at inception"

Anm.:MVM = -BEL

$$Le - Pr + z \cdot \ddot{U} + MVM = 0 \qquad Anm.: Pr = Le + z \cdot \ddot{U} + MVM$$

$$MVM = Pr - Le - z \cdot \ddot{U}$$

$$= \ddot{U} - z \cdot \ddot{U}$$

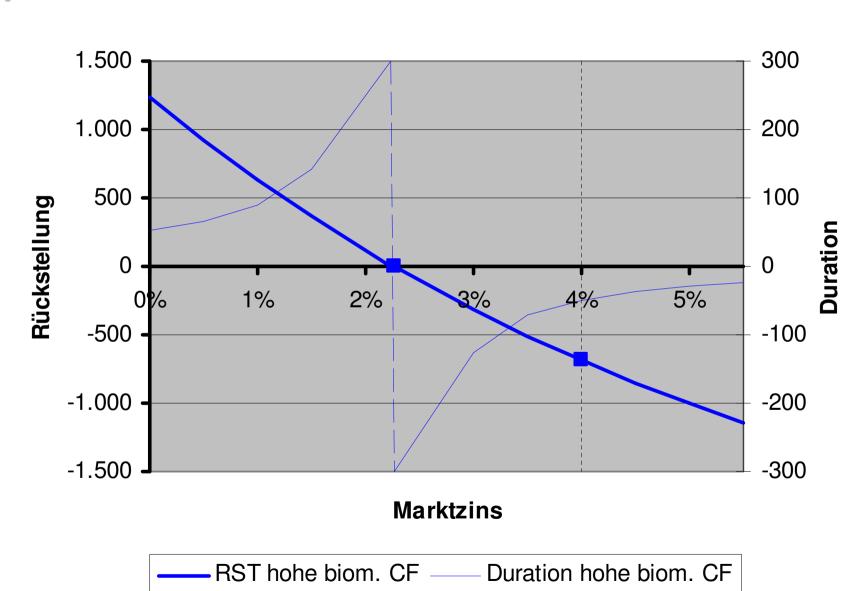
$$= (1-z)\ddot{U} = (1-z)(Pr - Le)$$

Interpretation

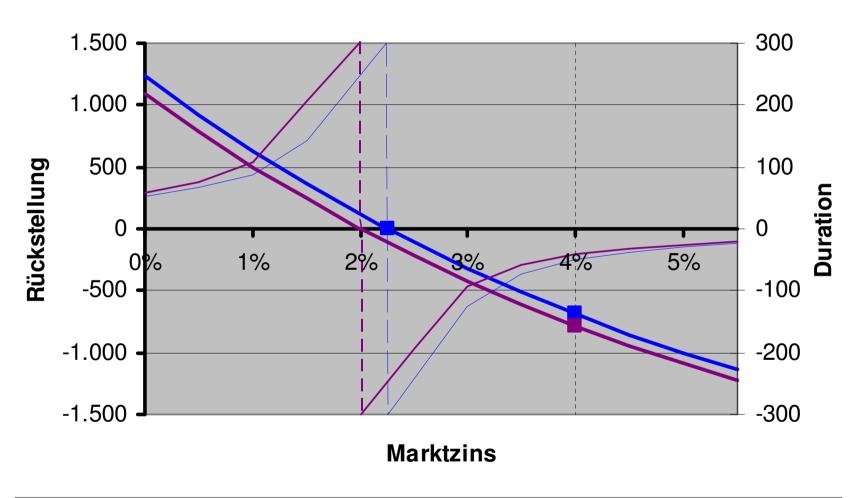
Wenn <u>z=100%</u>, so gibt das VU dem VN sämtliche von ihm "zu viel gezahlten" Beiträge zurück. Das VU verlangt also offensichtlich keinen Preis für das übernommene Risiko. Daher ist auch die MVM=0.

Wenn <u>z=0%</u>, so gibt das VU dem VN keine von ihm "zu viel gezahlten" Beiträge zurück. Das VU verlangt also offensichtlich alle Überschüsse als Preis für das übernommene Risiko. Daher beträgt die MVM = Ü = Pr-Le.

Beispielvertrag


12-jährige KLV

Beiträge: 1.000 EUR p.a., VS: 13.600 EUR


Zinsniveau 4%, Rechnungszins 2,25%

Rückstellung und Duration bei Vertragsabschluss

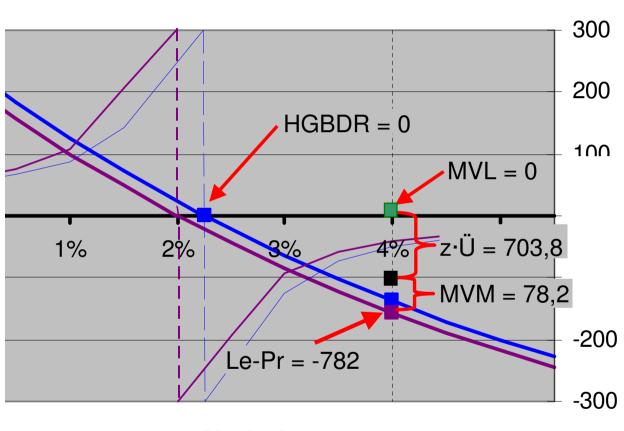
Rückstellung und Duration bei Vertragsabschluss

——RST hohe biom. CF
 ——Buration hohe biom. CF
 ——Duration Best Estimate biom. CF

Rückstellung und Duration bei Vertragsabschluss

Le-Pr = = -782

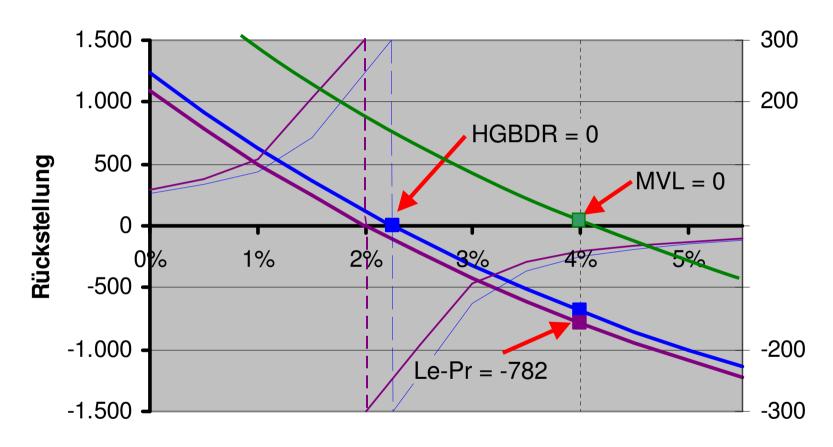
$$\ddot{U}$$
 = -(Le-Pr) = 782
z = 90%


$$z \cdot \ddot{U} = 703,8$$

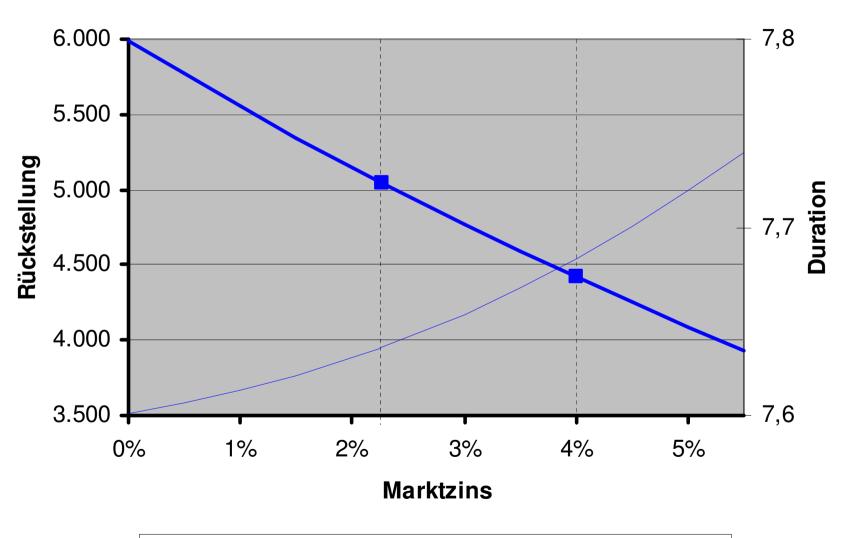
BEL = Le-Pr +
$$z \cdot \ddot{U}$$
 = -78,2

$$MVM = -BEL = 78,2$$

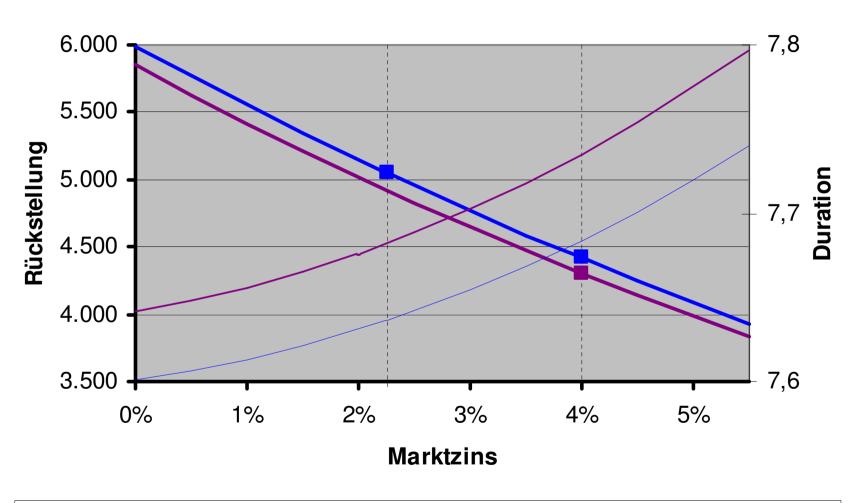
$$MVL = BEL+MVM = 0$$


hier: HGB-DR = MVL= 0

Marktzins

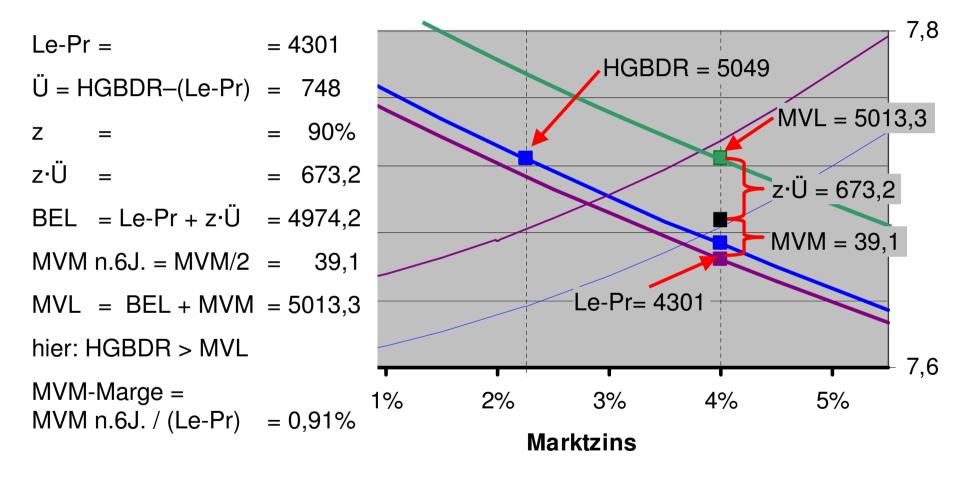

——RST hohe biom. CF ——RST Best Esimate biom. CF ——Duration hohe biom. CF ——Duration Best Estimate biom. CF

Rückstellung und Duration bei Vertragsabschluss



Sowohl bei Rückstellung als auch bei Duration muss man unterscheiden zwischen HGB-Wert, Garantiewerten und Marktwerten

Rückstellung und Duration nach 6 Jahren



Rückstellung und Duration nach 6 Jahren

——RST hohe biom. CF
 ——Buration hohe biom. CF
 ——Duration Best Estimate biom. CF

Rückstellung und Duration nach 6 Jahren

Fazit

- Unterscheidung zw. Duration der Garantiewerte und Marktwerte wesentlich
- Bei Vertragsabschluss ist HGB-DR und MVL gleich null
- Unter MW-Sicht gibt es keine negative DR;
 Maximierung der MVL mit null nicht erforderlich
- KapitalLV: MVL steigt im Vertragsablauf wg. Sparanteil an
- RisikoLV: MVL im gesamten Vertragsverlauf ungefähr null, da kaum Sparanteil; stark negativer Le-Pr wird durch hohe Risikomarge (für Cat-Risk) kompensiert

Fazit

- MVL als Risikoträger z. T. ungeeignet, da gleich null bei Vertragsabschluss. Ist MVM eher geeignet?
- Im Verlauf MVM z.B. linear abbauen? ("release from risk")

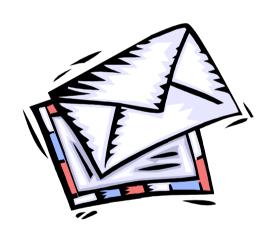
Bilanzen: HGB-, ökonomische -, Solva-

Ökonomische vs. Solva-Bilanz

Solvency II-Ziel: Harmonisierung der Rückstellungen.

Verbindlichkeiten sind wie folgt zu unterscheiden:

ökonomische Bilanz


SCR-Berechnung

Solvency-Bilanz

vt. Passiva = Le-Pr + MVM, denn bei Stress entfallen Überschüsse ASM-Berechnung

Kontakt

Dr. Holger Bartel

Abteilung Lebensversicherungsmathematik / Versicherungsmedizin / Produktvergleiche

GDV Gesamtverband der Deutschen Versicherungswirtschaft e.V. Friedrichstraße 191, 10117 Berlin

Tel. 030 / 2020 - 5218 e-mail: h.bartel@gdv.org

